Expert Answer
mechanical engineering question and need an explanation and answer to help me learn.
An example is given on how to solve the automatic control task. Follow the steps and solve the automatic control system task.
Requirements: pages
FacultyofMechanicsDepartmentofBiomechanicalEngineeringMEBIB17028AutomaticControl:HomeworkBookDr.JuliusGriÿskeviÿcius2022
Contents1Homework21.1Assignment......................................21.2Homeworksolutionexample.............................41
1Homework1.1AssignmentAcommonapplicationofcontrolsystemsisinregulatingthetemperatureofachemicalprocess.Theßowofachemicalreactanttoaprocessiscontrolledbyanactuatorandvalve.Thereactantcausesthetemperatureinthevattochange.Thistemperatureissensedandcomparedtoadesiredset-pointtemperatureinaclosedloop,wheretheßowofreactantisadjustedtoyieldthedesiredtemperature.Figure1showsthecontrolsystempriortotheadditionofthecontroller.Figure1:BlockdiagramofachemicalprocesscontrolsystemChooseparametersfromTable1.Performfollowingtasks:1.Obtainatransferfunctionofclosed-loopsystemandÞndcharacteristicequation.2.Evaluatetransientcharacteristicsoftheprocessalone(dampingratio,naturalfre-quency,settlingtime,maximumovershoot,risetime,timetoÞrstpeakifapplicable).3.DeterminetherangeofKvaluesforstabilityusingRouth-Hurwitzcriterion(assumeC(s)=1).4.SketchtheRootLocusoftheplant(seeRootLocusRules.pdfforguidelineshowto).5.SketchtheBodeplotoftheplant(seeBodeRules.pdfforguidelineshowto).Deter-mineGainandPhaseStabilityMargins.6.Supposeacontrolleroftheform:Gc(s)=Ks+zcs+pcistobeused.DeterminethemaximumsKforstabilityusingRouth-Hurwitzcrite-rion(choosezcandpcvaluesfromTable1).7.ChecksystemstabilityusingHurwitzandMikhaylovcriterions.2
Table1:Homeworkassignmentindividualparameters.Var.No.a1a2a3bc1c2zcpc11,181,960,240,430,0970,0622,3618,1921,711,340,480,400,1200,1151,6016,0031,401,220,270,400,0970,1251,7910,7840,681,370,490,370,1000,0721,5418,6050,771,330,340,370,1360,1052,5515,6161,771,770,300,420,1100,0511,8018,6571,171,650,160,380,0990,0861,5625,7581,931,490,160,350,1320,1424,7920,2291,891,040,350,390,0980,0701,6917,98101,911,740,330,420,0980,0812,3425,11110,611,930,220,420,0600,0783,5521,75120,911,880,170,420,0870,0792,9318,72131,751,150,400,360,1290,1401,5018,71140,911,530,240,380,0760,1092,0215,42151,671,740,320,430,1040,1202,1627,77160,761,800,420,400,0930,1013,7024,71170,921,240,400,370,0960,1314,7925,70181,741,490,100,420,0730,1081,3918,26190,751,710,080,410,0800,0891,8018,56201,191,270,400,360,0620,1362,8719,53210,181,880,390,380,0890,1353,8713,18221,821,790,260,390,1440,1374,3213,10231,751,630,130,380,1210,0532,9320,01240,921,180,370,400,0660,1424,0122,02251,021,870,440,420,1000,0542,9311,76261,541,040,120,420,0840,1194,1014,09270,521,980,080,400,1210,0611,9610,39280,471,790,300,400,0780,0662,0914,59291,311,630,450,360,0830,1173,3126,18301,681,290,350,350,1490,0971,8422,02310,951,820,370,380,0700,1034,2422,66320,251,280,470,410,0630,1141,5514,56330,151,140,430,370,0840,1241,3913,94341,881,360,140,420,0580,0834,9321,35350,271,540,280,450,0940,1341,8026,79360,591,200,020,430,1370,1481,8715,30371,121,450,460,410,1150,1304,8121,98380,791,150,340,430,0790,1411,9926,70390,861,340,080,440,1250,1272,3413,08400,71,70,250,40,10,1593
1.2HomeworksolutionexamplePlanttransferfunctionG(s)=b1s+b0s(a2s2+a1s+a0)Chooseparametersfromtable:Table2:Homeworkassignmentindividualparameters.Var.No.a2a1a0b1b0ap4124342621.Drawablockdiagramoftheplantunderproportionalcontrol.Figure2:Blockdiagranoftheplantunderproportionalcontrol,whereKp=12.Obtainatransferfunctionofclosed-loopsystemandÞndcharacteristicequation.T(s)=KpG(s)1+KpG(s)Characteristicequation:1+KpG(s)=0s(2s2+4s+3)+Kp(4s+2)=02s3+4s2+(3+Kp)s+Kp2=03.Evaluatetransientcharacteristicsfromastepresponsewhentheplantisintheopen-andclosed-loopconÞguration(assumeKp=1).Whentheplantisintheopen-loopconÞguration,thestepresponseis:Y(s)=G(s)?R(s)=4s+2s(2s2+4s+3)1sThepolesofthetransferfunctionare:s1,2=0;s3,4=1±j0.707Y(s)=K1s+1j0.707+K2s+1+j0.707+A1s+A2s2K1,2=0.222±j0.7857;A1=0.444;A2=0.6667y(t)=49+23t49et cos p22t!+2.5p2sin p22t!!4
Judgingfromtheaboveexpression,itcanbenotedthatstepresponseisincreasingin-Þnitely,so,therearenotransientcharacteristicstobecalculatedfromstepresponse.TransientcharacteristicscouldbeestimatedfromimpulseresponseusingMATLAB.Whentheplantisinclosed-loopconÞguration,thestepresponseis:Y(s)=G(s)?R(s)=4s+2(2s3+4s2+7s+2)1sThepolesofthetransferfunctionare:s1=0.348;s2,3=0.8296±j1.4988;s4=0Y(s)=K1s+0.348+K2s+0.8296j1.4988+K3s+0.8296+j1.4988+K4sK1=0.376;K2,3=0.312±j0.2154;K4=1y(t)=10.376e0.348t(0.312±j0.2154)e(0.8296±j1.4988)tJudgingfromthepolesofthe3rdordersystem,therealpoleandcomplexpoleseparationisabout2.2times,thereforetheplantcannotbeapproximatedas2ndordersystemandtransientcharacteristicscanbecalculatedusingonlyMATLAB:Tr=1.5492sec;Ts=8.6927sec.Figure3:Stepresponseoftheplant(fromMATLAB)4.SketchtheRootLocusoftheplant(seeRootLocusRules.pdfforguidelineshowto).(a)Characteristicequation1+KpN(s)D(s)=0,whereN(s)=4s+2;D(s)=s(2s2+4s+3)Orderofcharacteristicequationn=3(numberofbranchesofthelocus),numeratororderm=1,thereforenumberqofinÞnitezeroswhens!1q=mn=2(b)Determinepolesandzeros:Zeros:N(s)=0;4s+2=0;4s=2;sz=0.5Poles:D(s)=0;s(2s2+4s+3)=0;sp1=0;sp2,3=1±j0.7075
(c)PointonrealaxiswhereasymptotesintersectrealaxisA=nXi=1pimXi=1ziq=(1+j0.7071j0.707)+0.52=0.75Asymptotesradiateoutwithangles?(0)=12180=90?(1)=2+12180=270=90Rootlocusexistsontheleftofoddnumbersofpolesandzeros.Onebranchofthelocusisontherealaxisbetweensp1=0andsz=0.5.Figure4:Beginsketchingtherootlocus(d)Break-away/-inpointsonrealaxisexistswhereN(s)D0(s)N0(s)D(s)=0(4s+2)(2s3+4s2+3s)0(4s+2)0(2s3+4s2+3s)=0(4s+2)(6s2+8s+3)4(2s3+4s2+3s)=016s3+28s2+16s+6=0WeneedtoÞndroots(youcanuseMATLABcommandroots([1628166]):s1=1.169;s2,3=0.291±j0.486Onlyonerootisreal(s1),butthisparticularrootisnotonrootlocus,thereforerootlocuswillnotcrosstherealaxis.Onesegmentoflocusisbetweenpoleatoriginandzeroat-0.5.TherestofthebranchesoflocusstartfromcomplexpolesandgotoinÞnityapproachingasymptotes(at90degrees).6
(e)Angleofdeparturefromcomplexpole:?z=6(?depz1)=6((1+j0.707)(0.5))=6(0.5+j0.707)==tan1?0.7070.5?=18054=126?p1=6(?depp1)=6((1+j0.707)0)=6(1+j0.707)==tan1?0.7071?=18035=144?p3=6(?depp3)=6((1j0.707)(1j0.707))=6(j1.414)==tan1?1.4140?=90?dep=180+X?ziX?pi?dep=180+126(14490)=72Sincetherearenocomplexzeros,sothereisnoangleofarrivalatcomplexzero.Figure5:Sketchoftherootlocus(f)Doesthelocuscrossestheimaginaryaxis?WeneedtoÞndcriticalvalueofKpusingRouthcriterion.1+Kp=0s(2s2+4s+3)+Kp(4s+2)=07
2s3+4s2+(3+Kp)s+Kp2=0Table3:Routhtables32(3+Kp)0s24Kp20s13Kp+300s0Kp20Fromthesystemofinequalities:?3Kp+3>0Kp2>0WeseethatKpmustbemorethan0and1forsystemstability.CriticalvalueofKp=0.Complexbranchesdonotcrossimaginaryaxis,onlypoleatorigin.Figure6:RangeofKpvaluesforstabilityFigure7:ExactrootlocusviaMATLABforreferenceApproximatesketchofRootLocusisinFigure5.5.SketchtheBodeplotoftheplant(seeBodeRules.pdfforguidelineshowto).DetermineGainandPhaseStabilityMargins.8
(a)TransferfunctionisG(s)=4s+2s(2s2+4s+3).RewritetransferfunctionintoBodeform:G(s)=4s+2s(2s2+4s+3)=2s0.5+1s23s2+43s+1=23s0.5+1s23s2+43s+1(b)Componentsofthetransferfunction:Constant23,realzerosz1=0.5,realpolesp1=0,complexconjugatepoles(2s2+4s+3)=s2+2?!0s+!20where!20=32;!0=q32=1.22;2?!0=2;?=1p!0=0.8165.s!j!:G(j!)=23j!0.5+1j!23!2+43j!+1=23j!0.5+1j!123!2+43j!Calculatingmagnitudeandphaseoftransferfunction.Magnitude:20log10|G(j!)|=20log10?23?+20log10?j!0.5+1?20log10(j!)20log10?123!2+43j!?|G(j!)|=pRe2+Im2,6G(j!)=tan1ImReThevariableinBodeplotisfrequency!anditispossibletocalculatemagnitudeandphaseoffrequencytransferfunctionatparticularvaluesofthefrequency,like0,10Ð2,1,10etc.20log10|G(j!=0)|=3.5218+20log100@s12+?00.5?21A20log10?p02+02?20log100@s?123!2?2+?43j!?21A=3.521820log10|G(j!=102)|=3.5218+20log100@s12+?1020.5?21A20log10?p(102)2+02?20log100@s?123(102)2?2+?43102?21A=36.54Phase:6G(j!)=6?23?+6?j!0.5+1?6(j!)6?123!2+43j!?6G(j!=102)=tan1023+tan1 1020.51!tan1?1020?tan1?43102123(102)2?=89.69
(c)DrawasymptotesofeachcomponentaccordingtotheBoderulestable.TermMagnitudePhaseConstant:K20logK>0Realzero:s!0+1=s0.5+1lowfreq.asymptoteat0dBhighfreq.asymptoteat+20dB/decConnectasymptoticlinesat!0=0.5Lowfreq.asymptoteat0Highfreq.asymptoteat+90Connectwithlinefrom0.1!0to10!0,0.05to5Poleatorigin:1s-20dB/dec;from0dBat!=1-90forall!Underdampedpoles:1?s!0?2+2??s!0?+11(s1.22)2+1.634(s1.22)+1Lowfreq.asymptoteat0dBHighfreq.asymptoteat-40dB/decConnectasymptoticlinesat!0Drawpeakatfreq!0H(j!)=20log10(2?)Lowfreq.asymptoteat0Highfreq.asymptoteat180Connectwithstraightlinefrom!=!010?to!010?!1=1.22?100.8165=0.1861!1=1.22?100.8165=7.9958Figure8:SketchoftheBodeplot10
This question has already been tackled by one of our writers and a good grade recorded. You can equally get high grades by simply making your order for this or any other school assignment that you may have.
Pressed for time to complete assignments or when you feel like you cannot write, you can purchase an
essay on our website. Some students also want model papers to use as samples when revising or
writing. There are also students who approach our essay writing service to beat deadlines. We handle
every type of homework, assignment, and academic writing tasks. You can buy college essays and other
assignments here. At a glance, here are some reasons students prefer our website.